
SER3092

Abstract — Monitoring software quality in a development
project is an important task required of project management,
especially for large-scale projects. Our primary interest is
evaluating quality of a system’s structure and implications of
the structure for project management, maintenance, and
testing. Without the help of source code analysis tools it is
difficult to understand a large project, evaluate its quality,
and track progress effectively. In this paper we discuss
application of tools developed for this purpose to the open-
source Mozilla project.

Index Terms — Dependency analysis, metrics, open-source,
software quality.

I. INTRODUCTION

onitoring software quality [1] in a development project
is an important task required of project management,
especially for large-scale projects. This paper presents

results of an empirical study of a large open-source project,
Mozilla. Our primary interest is evaluating the quality of a
system’s structure and implications of the structure for project
management, maintenance, and testing.

Without the help of source code analysis tools it is difficult to
understand a large project, evaluate its quality, and track
progress effectively [2]. In this paper we focus on analysis
based on static type dependency between source code files.
The tools, discussed here, are used to generate different chart-
based and graphical views of a project’s current state. The
paper first presents the dependency model used and gives a
brief description of our analysis tools. It then analyzes the
Mozilla project.

The results provide significant insight into the quality of the
systems analyzed and provide some hints about how to
improve their structure.

II. DEPENDENCY MODEL

This paper is focused on dependencies between files, based on
the types and global functions they contain. We do this
because files are the units for analysis, management, and
testing in most development organizations. All of our data are
presented as direct dependencies. That is, we do not show the
transitive closures of the dependency graph. Analysis is
carried out this way because, for large systems, the transitive
closure becomes very dense and hard to interpret.

Dependencies between software files are essential so that one
component may provide services to another. However,
dependencies complicate the process of making changes,
perhaps to fix latent errors or performance problems, because
of the effects a change may have on other files. When files
each bind to many other files and mutual dependencies exist
between them, maintenance and testing may become quite
difficult to carry out effectively. It is not uncommon for a
change in one file to precipitate a cascade of changes in other
files, especially in the presence of mutual dependencies.

The dependency model used throughout this analysis is given
below.

Dependency Model - file A depends on file B if:

– A creates and/or uses an instance of a type declared or

defined in B
– A is derived from a type declared or defined in B
– A is using the value of a global variable declared and/or

defined in B
– A defines a non-constant global variable modified by B
– A uses a global function declared or defined in B
– A declares a type or global function defined in B
– A defines a type or global function declared in B
– A uses a template parameter declared in B

These rules intentionally do not acknowledge dependency of a
base type on its derived types even though it is possible that a

James W. Fawcett, Murat K. Gungor, Arun V. Iyer

ANALYZING STATIC STRUCTURE of LARGE

SOFTWARE SYSTEMS
Based on Data from Open-Source Mozilla Project

M

Manuscript received April 21, 2005.
Dr. James W. Fawcett is with the Electrical Engineering and Computer
Science Department, Syracuse University, Syracuse, NY 13244, USA
(phone: 315- 443-3948; e-mail: jfawcett@twcny.rr.com).
Murat K. Gungor is with the Electrical Engineering and Computer Science
Department, Syracuse University, Syracuse, NY 13244 USA (phone: 315-
443-4003 ; e-mail: mkgungor@ecs.syr.edu).
Arun Iyer is with the Electrical Engineering and Computer Science
Department, Syracuse University, Syracuse, NY 13244 USA (phone: 315-
443-4003 ; e-mail: aviyer@ecs.syr.edu).

SER3092

derived type modifies protected data members of the base.
Doing so, we believe, would identify potentially many false-
alarm dependencies in well designed systems. It would be
interesting to compare analyses of a major system with this
assumption and with a model in which the base is declared to
depend on all derived types if it provides protected data1.

There is one more important qualification we have to make
about this model. In much of the code base we’ve analyzed
for this paper there is a significant amount of code duplication
across the directory structures analyzed. If we accept
duplicate code our tool is not strong enough to sort out which
instance is being referenced by another file, and so we will
misclassify some dependencies. We’ve found these
misclassifications lead to larger predicted mutual
dependencies than are actually present in the system. Our
solution currently is to eliminate all duplicate code. This
results in some missed detections, but we want to err on the
side of conservative estimate of coupling rather than too
pessimistic estimate. Part of our future work will be directed
to a more thoughtful handling of these ambiguities.

A. Architectural View of Dependency Analyzer (Depanal)
DepAnal’s goal is to find dependencies between C/C++

source code files based on static type analysis. Dependency
relationships between the files are determined by the model
described above, as in [1] [3] [4]. DepAnal makes two passes
over each file in the project, as shown in Figure 1.

C/C++
Source Code

Collecting:
Fully qualified User defined types,
function declarations and definitions,
and global object declarations

Tokenizing and producing
Semi-expressions

Parsing

Collecting:
Object declarations,
function invocations
and global object useFiles

Files

Updating dependencies
among the files

First Pass
Second Pass

Tokenizing and producing
Semi-expressions

Parsing

C
/C

++
S

ource C
ode

Figure 1 - Dependency Analyzer Architecture

First Pass: DepAnal processes each line of code in each file to
capture user-defined types (class, struct, union, enum, typedef,
etc…), global functions, and global object declarations. These
are stored with fully qualified scope information for the
second pass.

Second Pass: DepAnal again processes each line of code to
search for creation of types, global function invocations, and
global object use to find dependencies between files. Our
approach is similar to [5] for data collection and analysis, but
provide different types of data transformations, presentation,
and analysis.

The DepAnal tool collects data from the source code with the
help of a C/C++ tokenizer and semi-expression composer,
shown in Figure 2. Semi-expressions are sequences of tokens

1 We are planning to do this, along with several other extensions to our
analysis, as later steps in our research.

that end with a semicolon, an open brace, or a closed brace, or,
in the case of preprocessor statements, that end with a new-
line. We have found that collecting semi-expressions as part
of the scanning process tends to simplify code analysis.
Collected information is stored in an STL based data container
in memory.

Tokenizer Semi-Expresssion
Analyzer Collecting;

definition and declartion of
types - functions - global objects

C/C++
Source Code

Figure 2 - Collecting data from source code

The internal architecture: The core task is to assemble useful
information from collected data in a representation that gives
easily comprehended views of the current state of an analyzed
project. DepAnal’s outputs are all text based. Charts showing
the system’s state of health are prepared using Microsoft
Excel.

The goal is to build a tool that can be used to constantly
monitor evolution of the state of large software systems and
provide guidance about where detailed quality analysis and
refactoring are needed.

We also developed three adjunct tools that provide additional
views of the data:

1. Strong Component Analyzer: SComp2 builds a

dependency graph from the data provided by DepAnal
and analyzes its strong components, that is, sets of files
that are mutually dependent. It then performs a
topological sort of the strong components to show an
ordered flow based on dependency. Finally it expands the
strong components, within the sorted component order, to
arrive at a representation of all the files as well ordered as
is possible when there are mutual dependencies. This
provides a candidate for testing order of the files that
attempts to minimize re-testing when latent defects are
found and repaired.

2. Size and Complexity Analyzer: Anal3 counts the number
of lines of source code in each function and analyzes each
function’s cyclomatic complexity, measured by the
number of regions enclosed by the control flow graph of
the function. Anal also evaluates the total line count and
sum of the complexities of all of the functions in each file.

3. DepView: Generates 2D graphical display of components
and their dependency relationships.

What the DepAnal tool does not do: it ignores all macros and
it makes no attempt to identify unused code. Its parser is not a
full implementation of a C++ recognizer, but rather an ad-hoc
implementation of the rules described in section II. We have
checked manually its results on modest size projects and run it
many times on our own code, as it evolved, and believe that

2 The first implementation of this tool was implemented by Srinivas

Neerudu, now with Microsoft in Redmond, Washington.
3 Perhaps we could have chosen a better name for this tool.

SER3092

the results are accurate, within the limitations described in this
paragraph.

III. DEPENDENCY ANALYSIS RESULTS

The data presented in this section has been collected from the
large open-source Mozilla project. All of our findings are
based on the dependency model discussed in the previous
section. We present several different views of the dependency
data for both projects and draw some conclusions about what
such data can disclose concerning a project’s implementation.

The Mozilla project is a very large project developing browser
tools for many different platforms. It consists of many
thousands of files, and so is a typical example of the large
systems we wish to explore [6]. The Windows-based version
of this software was chosen for analysis, as we are familiar
with that as a programming environment and have all the tools
to execute the various builds required for this study. We have
examined the entire Windows build as well as several
constituent libraries and adjunct tools, 6193 files in total,
generating builds for each before proceeding with our
analysis.

The analysis results are presented for several data sets, in three
views:

1. Fan-in: the number of files that depend on a file, for each

file in the analysis set, and related fan-in density histogram.
2. Fan-out: the number of files that a file depends on, for each

file in the analysis set and related fan-out density histogram.
3. Strong components: groups of files that are all mutually

dependent and its related strong component density
histogram.

We examine each of these views and interpret their data with
respect to measures of project implementation strengths and
weaknesses they reveal. Type dependency fan-in and fan-out
have been discussed before [7] [8] [9] with results presented
similar to those shown here. We focus on somewhat different
aspects of program implementation than discussed in those
papers.

A. Mozilla Data Collection
We downloaded version 1.4.1 of the Mozilla Win32

configuration [10] [11]. This included the entire build, which
makes many executables and libraries. We were able to build
all the libraries and executables in about a week’s effort, using
the information provided on www.mozilla.org. This involved
making a few recommended changes to make files, setting
environment variables, and settings in for the Visual Studio
C++ compiler, used for all the builds for this paper.

Note that our analysis pertains only to the Mozilla source
code, but we wanted to ensure that we analyzed exactly those
files used to create individual executables and libraries. It
took some time to understand the required directory structure,

make some modifications to that to suit our analysis, and then
make trial builds, but the process went surprisingly smoothly.

We built some simple parsers to find all the files included in a
specific build, based on compiler output. This included all
common code and header files. The statistics for this process
are:

Number of executables: 94
Number of dynamic link libraries: 111
Number of static libraries: 303
Number of source files for Win32, v 1.4.1 6193

The information provided on the Mozilla web site was very
well prepared, easy to digest, considering the size of this large
project, and straightforward to use. We chose this project
because of the quality of its tools and the fact that it has a very
large code base.

The analysis tools developed for this research were able to
digest the entire code base of 6193 files and perform all the
analyzes in approximately 1 day on a PC with 1 Gigabyte of
random access memory, running Windows XP Professional,
with Pentium IV Processor.

B. Fan-In Data Extracted From Mozilla GKGFX Library
 Figure 3, below, shows fan-in for each of the files in the

Mozilla GKGFX library. This plot analyzes all of the
dependencies on each of the 598 source code files in the
library from within the library. When we analyze the entire
build many of these fan-in numbers become larger.

A file with large fan-in is desirable from the perspective that it
demonstrates high reuse of the types defined in that file4.
However, should that file have less than desirable quality
attributes one would expect to see a high probability of
change, not only for that file, but also for many of the large
number of files that depend upon it. [12]

Figure 3 - Mozilla GKGFX Library Fan-in

There are scores of files, shown in Figure 3, with very large
fan-in. All of these should be important targets for quality
analysis, in order to effectively manage the change process
during development. High fan-in coupled with low quality

4 We would expect to see high fan-in for some utility library routines, for

example.

0

20

40

60

80

100

120

140

Library Source Code Files

Fa
n-

in
 S

iz
e

SER3092

creates a high probability for consequential5 change [13]. We
have also looked at the wealth of change data provided by
Mozilla’s associated change data log to understand this
process better.

In Figure 4 we show fan-in density for the same library. This
is simply a histogram for the data in Figure 3. This plot shows
that a large fraction of the source code files have high fan-in,
characteristic of a widely used library. A library with this
profile should be given high priority for analysis by the test
team and quality analysts.

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 23 27 29 32 37 40 43 45 47 68 90 12
2

Fan-in Size

N
um

be
r o

f F
ile

s
w

ith
 S

pe
ci

fie
d

Fa
n-

in

Figure 4 - Fan-in Histogram for Mozilla GKGFX Library

C. Fan-Out Data Extracted from the Mozilla GKGFX
Library
Fan-out for the GKGFX library is shown in Figure 5, below.

A file with large fan-out may be symptomatic of a weak
abstraction. We expect that a source file may carry out its
assigned tasks with the aid of a few trusted delegates and
perhaps a few references to commonly used utilities.
However, depending on scores of other files may indicate a
lack of cohesion – file is taking responsibilities for many,
perhaps only loosely related, tasks and needs the services of
many other files to manage that.

Figure 5 – Mozilla GKGFX Library Fan-out

 Figure 6 shows a Fan-out histogram for the data in Figure 5.
There are a significant number of files with large fan-out. If
one follows the classic test model, testing code that only
depends on already tested code, this profile suggests difficulty
scheduling testing for this library.

5 By consequential change we mean a change induced in a depending file

due to a change in the depended upon file.

Figure 6 – Fan-out Histogram for Mozilla GKGFX Library

Automated test schedule planning tools can provide significant
help for this, but, we show below that there may still be
persistent problems creating a satisfactory test sequence for
libraries with many high fan-out files

D. Strong Components in the Mozilla GKGFX Library
A strong component is a set of source code files, elements in

the dependency graph that are mutually dependent. Any given
file from a strong component depends, either directly or
indirectly6 , on every other file in the component. There can
be no complete dependency ordering within a strong
component, so there is no way to prepare a classic testing
schedule based on testing only already tested code.
Essentially the strong component must be treated as a unit.
The larger strong components become, the more difficult it is
to adequately test. Figure 7 shows a strong component
histogram for the GKGFX library. There are many strong
components of modest size, and one huge component,
consisting of 119 files. Presence of the very large set of
mutually dependent files, defined by this strong component,
indicates difficulties in carrying out a classic testing program
for this library.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 56 119

Strong Component Size

N
um

be
r o

f s
tr

on
g

co
m

po
ne

nt
 w

ith
 th

is
 s

iz
e

Figure 7 – Mozilla GKGFX
Library Strong Components

Figure 8 –GKGFX Strong
Components

The dependency coupling that forms strong components may
be due to the use of non-constant global data [14], to callbacks
that provide notifications to a caller distant in the dependency
tree, or to mutual dependencies on types defined across the
strong component. Whatever the source, they indicate
problems with testing and possibly with change management,
due to consequential changes to fix latent errors or
performance problems [13].

Another issue that this plot illustrates is the lack of well
defined modules. The dependency model we use for this

6 Type-based dependency is a transitive relationship. For reasons

discussed earlier, we chose to show only direct dependencies.

0

10

20

30

40

50

60

70

Library Source Code Files

Fa
n-

ou
t S

iz
e

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 31 46 48 50 55 58 60

Fan-out Size

N
um

be
r o

f F
ile

s
w

ith
 S

pe
ci

fie
d

Fa
n-

ou
t

SER3092

analysis recognizes mutual dependencies between declaration
and implementation of a type or global function. So we would
expect, for non template-based source code, to see most files
appearing in strong components of size two, or a few more
perhaps, reflecting the design of a module with declarations of
all types provided by the module in a header file and
implementations in a corresponding implementation file,
ideally of the same name. Here, Figure 8, we see that most of
the files in this library do not fall into the classic module
structure.

In Figure 9, each circle represents a strong component;
number on the circle shows how many files are in that strong
component. In the figure, largest strong component consist of
119 files, lines from center of the circle show fan-outs and
lines coming the left corner of the circle show fan-ins to this
component.

Figure 9 –This figure shows dependencies of only two of the

largest strong components with other components.

In Figure 9, we show only external dependencies among
components, besides this, there are large numbers of
dependencies between the members of a component.

Figure 10 – Internal dependencies of Component 52, the

largest GKGFX strong component.

If strong component size gets larger, it reduces the ability to
adapt to new change, since change may result in further,
consequential, unexpected changes. This reduces the gain
from change, and management may no longer accept new
changes after some point. This illustrates how an un-
maintainable system may be created.

Figure 10 shows how files are densely connected to each other
in the largest of the GKGFX libraries biggest strong
component. This component will have a very large risk
associated with its testing. Because of its internal dependency
density, any change is likely to cause a cascade of
consequential changes requiring further testing.

Including external fan-in and fan-out dependencies of the
largest strong component in GKGFX, shown in Figure 11,
reveals that if any other depended-upon component changes;
Component 52 also needs to be tested to make sure that it still
performs according to its requirements.

Approximately half of the dependencies shown in Figure 11,
below are Fan-In dependencies on the largest strong
component. Consequently all of those external files will
suffer test risk inherited from the component due to their
dependency.

Figure 11 – Internal & External Fan-In and Fan-Out
dependencies for largest GKGFX strong component

IV. CONCLUSIONS

In summary, type-based dependency analysis appears to be a
useful tool with which to direct implementation and testing of
large projects.

We can draw conclusions about:
– Quality of abstractions used in the project, based on fan-

out of individual files.
– Potential for consequential change when files with high

fan-in have poor quality.
– Difficulty preparing effective test plans when files have

high fan-out, especially in the presence of mutual
dependencies.

– How well the project is packaged into modules.

SER3092

The empirical study has demonstrated that useful information
about significant problems in both large and small systems can
be identified without a detailed knowledge of the entire code
base.

REFERENCES

[1] Stefan Jungmayr, “Identifying Test-Critical

Dependencies”, Proceedings of the International
Conference on Software Maintenance (ICSM'02), IEEE,
2001.

[2] S. Bassil, R.K. Keller, "Software Visualization Tools:
Survey and Analysis", Proc. of the 9th International
Workshop on Program Comprehension (IWPC'01), IEEE,
May 2001.

[3] Y. Yu, H. Dayani-Fard, J. Mylopoulos, “Removing false
code dependencies to speedup software build processes”,
Proceedings of the 2003 conference of the Centre for
Advanced Studies conference on Collaborative research
Pages: 343 – 352, 2003 Toronto, Ontario, Canada

[4] S. Robitaille, R. Schauer & R. K. Keller, “Bridging
Program Comprehension Tools by Design Navigation",
IEEE International Conference on Software Maintenance,
San Jose, CA (Oct., 2000).

[5] Zhifeng Yu, Václav Rajlich, “Hidden Dependencies in
Program Comprehension and Change Propagation”, Ninth
International Workshop on Program Comprehension
(IWPC'01) May 2001, Toronto, Canada

[6] Michael W. Godfrey,Eric H. S. Lee, “Secrets from the
Monster: Extracting Mozilla’s Software Architecture”,
Proc. of the Second Intl. Symposium on Constructing
Software Engineering Tools (CoSET-00), Limerick,
Ireland, June 2000

[7] Ramanath Subramanyam, M.S. Krishnan, “Empirical
Analysis of CK Metrics for Object-Oriented Design
Complexity: Implications for Software Defects”, IEEE
Transaction on Software Engineering, Volume 29, No.4,
April 2003

[8] Aaron Binkley, Stephen Schach, “Inheritance-Based
Metrics for Predicting Maintenance Effort: An Empirical
Study”, Technical Report 97-05, Computer Science
Department, Vanderbilt University, Nashville, TN, 1997

[9] Aaron Binkley, Stephen Schach, Metrics for Predicting
Run-Time Failures”, Technical Report 97-03, Computer
Science Department, Vanderbilt University, Nashville,
TN, 1997.

[10] Mozilla the Configurator,
http://webtools.mozilla.org/build/config.cgi

[11] Mozilla on Microsoft Windows 32-bit Platforms,
www.mozilla.org/build/win32.html

[12] Norman E. Fenton, Niclas Ohlsson, “Quantitative
Analysis of Faults and Failures in a Complex Software
System”, IEEE Transactions on Software Engineering,
Volume 26, Issue 8, August 2000

[13] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.s.
Marron, Audris Mockus, “Does Code Decay? Assessing
the Evidence from Change Management Data”, IEEE
Transaction on Software Engineering, Volume 27, No.1,
January 2001

[14] Stephen Schach, Bo Jin, David Wright, Gillian Heller,
Jeff Offutt, “Quality Impacts of Clandestine Common
Coupling”,
http://www.vuse.vanderbilt.edu/~srs/preprints/clandestine
.preprint.pdf

James W. Fawcett (M’61–LM’04) received his PhD degree in Electrical
Engineering from Syracuse University. His research interests include software
complexity and developing infrastructure to re-engineer software reuse
processes and make accessible, for reuse, not only code, but also
documentation and test products.

Murat K. Gungor received his BS degree in industrial engineering from
Sakarya University in Turkey, and received his MS degree in computer
science from Syracuse University. Currently (2005) he is continuing his PhD
study at Syracuse University. His research interests include static software
analysis, software change and using software metrics to understand and
improve static structure of large software systems.

Arun V. Iyer received his MS degree in Computer Engineering. His research
interests include software quality metrics and re-factoring.

